
 Motivation  
• Theory of Mind (ToM) refers to the ability to infer one’s own and 

others’ mental states  crucial for collaboration.

• It is imperative for AI agents to possess similar capabilities.

• Recent work has introduced collaborative plan acquisition (CPA) as 

a promising task for evaluating collaborative abilities in agents and 
their relation with Theory of Mind [1,2].


• As including ToM features in the models did non consistently improve 
performance, the nature of this connection remains unclear.

→

[1] Bara, Cristian-Paul, et al. "MindCraft: Theory of mind modeling for situated dialogue in collaborative tasks." EMNLP (2021).
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 Our Contributions  
1. Graph-based representation of plans + graph learning methods 

significantly improves performance.

2. Principled analyses that suggest that learnt ToM features reflect 

latent patterns in the data with no perceivable link to ToM.

Two players collaborate to craft a target material. Players initially 
receive a partial plan as an incomplete directed AND-graph and a tool 
allowing each to interact with a set of specific blocks.
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ToM Features Overall OMK PMK

Status Knowledge Intention Bara et al. (2023) Ours Bara et al. (2023) Ours Bara et al. (2023) Ours

44.1± 0.6 56.9± 0.6 16.7± 0.1 57.6± 0.8 71.4± 1.0 56.2± 0.3
X 45.9± 1.5 57.3± 0.6 20.4± 1.4 58.0± 0.8 71.3± 1.6 56.5± 0.3

X 47.2± 1.1 57.0± 1.4 20.1± 1.4 58.4± 0.5 74.3± 0.7 55.5± 1.9
X 47.4± 1.4 57.2± 0.5 19.8± 1.7 57.9± 0.7 75.0± 1.0 56.5± 0.3

X X 47.0± 1.4 56.6± 1.4 20.9± 1.2 57.7± 0.5 73.1± 1.5 55.5± 1.9
X X 45.9± 1.2 57.5± 0.6 19.8± 0.8 58.4± 0.8 71.9± 1.5 56.5± 0.3

X X 46.9± 1.5 57.5± 0.6 20.3± 1.8 58.5± 0.8 73.4± 1.2 56.4± 0.1
X X X 45.5± 0.3 56.7± 0.7 17.4± 0.1 57.1± 1.9 73.5± 0.5 56.6± 0.2

Table 6: Performance comparison on CPA when training with learnt ToM features. F1 scores for the baseline are
reported from the original paper (Bara et al., 2023) rather than from our execution of the official code.
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Figure 5: Chat from a game in which our ToM model
cannot solve the Player Intention ToM task. In the same
game, integrating the corresponding ToM features into
the CPA model enhances the performance on PMK.

It is important to node that our main contribu-
tions remain unaffected by this mismatch: First,
our improvement on OMK stands, both if we com-
pare our baseline results and those reported in Bara
et al. (2023). Notably, our results for the baselines
(⇠ 0.28) are higher than the ones in the original
paper (⇠ 0.21). Second, our analyses are not con-
tingent on absolute results but rather on the rela-
tionship with the ToM tasks.

A.4.1 Qualitative Example
Figure 5 shows the chat from a game in which
our ToM model cannot solve the Player Intention

ToM task. However, on the same game, integrat-
ing the corresponding ToM features into the CPA
model enhances the performance on the PMK task
by approximately 10 points. This particular game

instance is highlighted by the dotted red circle in
the rightmost plot of Figure 4. We speculate the
ToM model’s struggle with the Player Intention

task may arise from the initial game part where
players’ beliefs are misaligned, which could result
in a false belief (cf. Figure 5). Despite this, the
CPA model still benefits from the inclusion of ToM
features, suggesting that ToM models may actually
be learning information that is more closely associ-
ated with other correlations in the data, rather than
representing the mental states.

A.5 Tools
We performed our data analysis using NumPy (Har-
ris et al., 2020), Pandas (pandas development
team, 2020; McKinney, 2010), and SciPy (Virta-
nen et al., 2020). Figures were made using Mat-
plotlib (Hunter, 2007).

A.6 Infrastructure
We ran our experiments on a server running Ubuntu
22.04, equipped with NVIDIA Tesla V100-SXM2
GPUs with 32GB of memory and Intel Xeon Plat-
inum 8260 CPUs.

ToM Features Overall OMK PMK

Status Knowledge Intention Bara et al. (2023) Ours Bara et al. (2023) Ours (NS) Ours Bara et al. (2023) Ours

46.6± 1.6 56.9± 0.6 27.7± 2.3 23.7± 2.5 57.6± 0.8 65.4± 0.2 56.2± 0.3
X 46.7± 2.0 57.3± 0.6 26.1± 2.5 26.6± 2.4 58.0± 0.8 67.2± 1.2 56.5± 0.3

X 47.4± 1.7 57.0± 1.4 28.0± 1.8 24.7± 2.6 58.4± 0.5 66.8± 1.5 55.5± 1.9
X 47.2± 1.9 57.2± 0.5 28.0± 2.6 26.0± 1.2 57.9± 0.7 66.3± 0.8 56.5± 0.3

X X 47.6± 1.5 56.6± 1.4 28.4± 1.4 25.2± 0.3 57.7± 0.5 66.8± 1.5 55.5± 1.9
X X 47.6± 1.7 57.5± 0.6 28.4± 1.8 27.2± 1.3 58.4± 0.8 66.8± 1.5 56.5± 0.3

X X 47.2± 1.7 57.5± 0.6 27.6± 1.9 27.7± 0.7 58.5± 0.8 66.8± 1.5 56.4± 0.1
X X X 47.4± 1.8 56.7± 0.7 27.9± 2.0 26.6± 2.9 57.1± 1.9 66.8± 1.5 56.6± 0.2

Table 2: Performance comparison on CPA when training with learnt ToM features. We report the overall F1 scores
as well those for own (OMK) and partner (PMK) missing knowledge prediction. NS = Naive Sampling.

ToM Task ToM OMK PMK Random

Status 60.6 51.6 49.5 46.7
Knowledge 50.9 49.8 50.8 45.1
Intention 10.2 14.1 13.0 9.3

Table 3: F1 scores on ToM tasks for logistic regression
models trained using ToM features, CPA features and
random noise. OWM and PMK indicate features com-
ing from our model trained, without ToM features as
input, on one’s own and partner’s missing knowledge
prediction, respectively.

relying much on the learned ToM features. This
can be seen from the results of the different ab-
lated versions of Table 2. To study the effect of
ToM features on CPA performance, we performed
paired t-tests between our model trained without
ToM features and versions of our model trained
with different sets of ToM features. We can see that
the ToM features did not result in any statistically
significant performance difference on CPA since
all tests resulted in p > 0.05. Notably, performing
the significance testing on the baseline model of
(Bara et al., 2023) yielded the same behaviour, i.e.
p > 0.05 across all model versions. Therefore, we
challenge the utility of the ToM features in CPA
by posing the question of whether these features
represent actual information about mental states
or reflect latent patterns in the data. We empiri-
cally answer this by performing various principled
experiments ranging from diagnostic probing to
correlation analysis over substituting ToM features
with ground-truth labels.

5.3 Probing for Theory of Mind

Motivated by our results, we formulate the follow-
ing research question: Does ToM modelling as pro-

posed by Bara et al. (2023) actually capture mental

state information? To answer this question, we con-
ducted extensive analyses to study the impact of

ToM modelling on CPA from different angles.

5.3.1 Diagnostic Probing
The ToM features used in CPA are obtained by
learning the different tasks of Section 3. As a re-
sult, we expect such features to exclusively hold
some information about the mental state that other
models, when trained on different tasks than ToM,
simply lack. To validate this intuitive hypothe-
sis, we used diagnostic probing (Alain and Ben-
gio, 2017; Adi et al., 2017; Conneau et al., 2018;
Hupkes et al., 2018) and trained a simple logistic
regression (LR) model to perform the three ToM
classification tasks. We trained the LR model with
different inputs in each experiment and tested its
performance on the ToM tasks using the test split.
More specifically, we considered four different in-
put scenarios: the vanilla ToM features used in the
previous experiments, the hidden representations
of the transformer from models predicting OMK
and PMK (output of the green model in Figure 2),
and finally random noise. As seen in Table 3, a LR
model trained on ToM features can perform rea-
sonably well on the three tasks, especially Status.
However, when trained with missing knowledge
features, i.e. features completely optimised in the
absence of ToM, the LR model achieves compa-
rable performance in Knowledge and even better
performance in Intention.

These findings open up two possible scenarios:
(1) The learnt ToM features are more likely to rep-
resent latent patterns in the data with no perceivable
link to ToM; (2) ToM capabilities spontaneously
emerge from training models on CPA.

5.3.2 Correlation Analysis
In this experiment, we explored whether improve-
ments in CPA tasks correlate with the performance
of models on ToM tasks, which are then used to
extract ToM features. Intuitively, if the ToM fea-

Status

Modalities Bara et al. (2023) Ours Human

M 47.7± 0.6 59.9± 0.7 67.0
D+M 45.5± 2.3 59.1± 0.6 67.0
D+V+M 45.2± 1.8 58.9± 0.8 67.0
V+M 47.3± 0.7 59.6± 0.4 67.0

Knowledge

Modalities Bara et al. (2023) Ours Human

M 51.5± 1.1 57.9± 0.2 58.0
D+M 50.0± 1.5 57.2± 1.5 58.0
D+V+M 50.2± 1.1 57.5± 1.7 58.0
V+M 50.5± 1.6 57.6± 1.8 58.0

Intention

Modalities Bara et al. (2023) Ours Human

M 9.1± 0.2 11.7± 2.2 46.0
D+M 8.7± 2.1 11.1± 1.8 46.0
D+V+M 10.5± 2.3 12.1± 2.4 46.0
V+M 9.0± 0.3 13.4± 1.9 46.0

Table 1: Performance comparison on the three ToM
tasks using different combinations of modalities: dia-
logue moves (M), dialogue (D), and video frames (V).
We report the F1 scores obtained by the baseline (Bara
et al., 2023), our model, and humans.

sampled negative edges:

L = �
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where � indicates the sigmoid function. Additional
details about the model’s architecture and training
are provided in §A.3.

5 Experiments

5.1 Theory of Mind Modelling
We first report the performance of our model on
the three ToM tasks introduced in Section 3. As
summarised in Table 1, our model outperforms
the baseline1 on all three tasks, underlining the
efficiency of the proposed GNN-based approach.
Notably, as highlighted in green in Table 1, our
model manages to even match human performance
in the Knowledge task. However, performance on
the other two tasks is still far from a human level,
especially on Intention. This might be attributed
to the fact that, unlike Knowledge that does not
require temporal modelling and could be solved by

1Despite training the baseline model (Bara et al., 2023)
using the official code, its performance slightly deviated from
the original paper, and discussions with the authors did not
yield clarity. See §A.4 for further details and comparisons.

using plan information, both Status and Intention

require accurate temporal modelling, which has to
be kept coherent across the different input modali-
ties. As can also be seen from the table, ablations
of different input modalities have little impact on
the final performance of our model and the baseline
for all ToM tasks.

5.2 Collaborative Plan Acquisition (CPA)
Subsequently, we evaluate our model on the CPA
task following Bara et al. (2023). We always use
dialogue moves as input since they were shown to
have a positive impact on performance. As can be
seen from Table 2, our model consistently achieves
overall F1 scores of over 56.6 thereby significantly
outperforming the baseline of Bara et al. (2023) in
all evaluation settings.

Own Missing Knowledge (OMK). We first anal-
yse the task of predicting one’s own missing knowl-
edge. As can be seen in Table 2, our model man-
ages to double the performance of the baseline2

by consistently achieving F1 scores of over 57%.
In stark contrast to the baseline, which performs
best when using only ToM features extracted from
Intention, our model’s best performance is obtained
by additionally incorporating features extracted
from Knowledge. The benefit of these features on
CPA is expected and intuitively makes sense since
Knowledge was the ToM task for which our models
achieved human-level performance (see Table 1).

Partner’s Missing Knowledge (PMK). Second,
we evaluate the task of predicting the partner’s miss-
ing knowledge. In contrast to prior work (Bara
et al., 2023), our evaluations reveal a significantly
reduced performance gap between predicting the
different types of missing knowledge (OMK vs
PMK) as can be seen in the second part of Table 2.
As highlighted in blue , this can be attributed to
our proposed candidate sampling approach that,
contrarily to naive sampling, effectively narrowed
down the pool of valid candidate edges for one’s
own missing knowledge to a similar order of mag-
nitude as that of the partner’s. The difference in
performance compared to the baseline is likely due
to the choice of cost function used for training.

Statistical Tests. Although our model attained
improved results on CPA, especially in predicting
one’s own missing knowledge, it did so without

2In this case, the scores are higher than the ones reported
in (Bara et al., 2023).

ToM Labels OMK PMK

Status Knowledge Intention Bara et al. (2023) Ours Bara et al. (2023) Ours

26.3± 1.9 58.2± 0.3 60.9± 3.2 51.5± 4.7
X 26.8± 1.6 58.5± 0.6 66.0± 1.9 51.5± 4.7

X 26.8± 1.6 58.3± 0.2 66.0± 1.9 51.5± 4.7
X 26.8± 1.6 58.2± 0.3 66.0± 1.9 52.2± 3.4

X X 26.6± 1.2 58.3± 0.2 66.0± 1.9 51.5± 4.7
X X 27.0± 1.4 58.4± 0.2 66.0± 1.9 51.5± 4.7

X X 26.9± 1.6 58.6± 0.5 66.0± 1.9 51.0± 4.2
X X X 26.6± 1.1 58.5± 1.3 66.0± 1.9 51.5± 4.7

Table 4: Performance comparison on CPA when training with ground-truth ToM labels. We report F1 scores for
own (OMK) and partner (PMK) missing knowledge prediction.

CPA, as shown in Table 2 and Table 4. This finding
is surprising and worrisome at the same time and
calls for a fundamental re-assessment of how to
equip computational agents with ToM capabilities
and how to evaluate them. Despite research on this
topic still being in its infancy, the problem of cor-
rectly learning neural ToM has recently been put
more and more under scrutiny (Sap et al., 2022;
Aru et al., 2023). Our results underline in a directly
observable way that the acquisition of comprehen-
sive ToM capabilities cannot be reduced to merely
passing a specific, narrow set of tasks. The main
rationale for this conclusion is that we still do not
have a task for which possessing ToM capabilities
is both a necessary and sufficient prerequisite for its
resolution. Current ToM benchmarks rely on tasks
that seem to intuitively require ToM to be solved.
However, these tasks can often be solved by just
exploiting shortcuts within the data (Le et al., 2019;
Aru et al., 2023; Bortoletto et al., 2024). As a re-
sult, we posit that directly optimising an agent
or system for ToM may not represent an effec-
tive approach for progress.

Instead, recent work proposed the use of open-
ended environments to study ToM with the aim
of observing whether these capabilities emerge
through interactions with other agents (Aru et al.,
2023). Minecraft represents a good candidate envi-
ronment for multi-agent collaboration in an open
world. However, the way Bara et al. (2021, 2023)
frame MindCraft is still limited to specific tasks
and requires extensive data collection efforts. One
possible solution could be to transform MindCraft

into a reinforcement learning environment with a
focus on less constrained collaborative tasks. While
Bara et al. (2021, 2023) suggest modelling ToM

as a supervised learning task, the way humans ac-
quire ToM is more nuanced and largely unsuper-
vised (Ruffman, 2023). We believe that the devel-
opment of open-ended environments combined
with learning ToM capabilities in an unsuper-
vised, human-like manner is a more promising
direction for future research.

ToM capabilities are deeply linked to language
acquisition (Tomasello, 2005). In the context of
dialogue-based collaboration, another interesting
future direction could be to learn ToM from gen-
eration instead of classification (Liu et al., 2023).
Current approaches could be further improved by
building a more general and robust world model,
e.g., by leveraging a pre-trained language or video-
language model as a more general prior. Finally,
in addition to developing suitable environments
and learning algorithms, effective and interpretable
methods to evaluate whether agents have truly
learned ToM will be crucial. We see three exciting
directions in this regard: probing (Niven and Kao,
2019), mechanistic interpretability (Wang et al.,
2023), and concept learning (Oguntola et al., 2021;
Chen et al., 2020). The work of Oguntola et al.
serves as an inspiring example, where agents learn
human-interpretable concepts that represent beliefs
about other agents in a simple multi-agent rein-
forcement learning setting.

7 Conclusion

In this work, we demonstrated that applying task-
specific constraints to plan graphs reduces signif-
icantly the performance gap between predicting
OMK and PMK in MindCraft. At the same time,
improvements from ToM modelling diminish, rais-
ing concerns about current approaches. Our ex-

 Probing for Theory of Mind  

1. No statistical significance between models with ToM and without 
ToM features.

2. Probing experiments: Features 
trained on CPA yield similar 
performance.

3. Improvements in CPA tasks do not correlate with performance of on ToM 
tasks.

4. Trained models with ground-truth mental state information under-
perform those trained with learnt ToM features on OMK and PMK.

 Limits and Future Directions for Neural Theory of Mind   
• Directly optimising a system for ToM may not represent an effective 

approach for progress.

• Open-ended environments + self/unsupervised learning is a more 

promising direction for future research.

• Generation instead of classification, leveraging large pre-trained 

models as prior.

• Work on interpretability methods.

 MindCraft [1,2] 
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